首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3899篇
  免费   199篇
  国内免费   228篇
  2024年   14篇
  2023年   66篇
  2022年   81篇
  2021年   104篇
  2020年   105篇
  2019年   115篇
  2018年   129篇
  2017年   84篇
  2016年   117篇
  2015年   248篇
  2014年   276篇
  2013年   329篇
  2012年   161篇
  2011年   176篇
  2010年   139篇
  2009年   201篇
  2008年   195篇
  2007年   211篇
  2006年   172篇
  2005年   180篇
  2004年   176篇
  2003年   138篇
  2002年   119篇
  2001年   79篇
  2000年   71篇
  1999年   74篇
  1998年   67篇
  1997年   59篇
  1996年   52篇
  1995年   55篇
  1994年   48篇
  1993年   42篇
  1992年   27篇
  1991年   31篇
  1990年   31篇
  1989年   28篇
  1988年   17篇
  1987年   24篇
  1986年   12篇
  1985年   9篇
  1984年   19篇
  1983年   11篇
  1982年   11篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1974年   2篇
  1971年   1篇
排序方式: 共有4326条查询结果,搜索用时 15 毫秒
81.
The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases.  相似文献   
82.
Five cDNAs (pDidact2–pDidact6), representing different actin genes, were isolated from a Diphyllobothrium dendriticum cDNA library, and the DNA as well as the putative amino acid sequences were determined. The corresponding Didact2 and Didact4 genes code for peptides 376 amino acids long, with molecular weights 41,772 and 41,744 Da, respectively, while the deduced Didact3 protein is 377 amino acids long and weighs 41,912 Da. The pDidact5 and -6 cDNAs lack nucleotides corresponding to three to six amino acids at the amino-terminus. Two of the five cDNAs contain the conventional AATAAA as the putative polyadenylation signal, one has the common variant ATTAAA, whereas the hexanucleotide AATAGA is found 15 and 18 nucleotides, respectively, upstream of the poly(A) site in two of the cDNAs. Phylogenetic studies including 102 actin protein sequences revealed that there are at least four different types of cestode actins. In this study three of these types were found to be expressed in the adult D. dendriticum tapeworm. Structurally the cestode actin groupings differ from each other to an extent seen only among the metazoan actins between the vertebrate muscle and cytoplasmic isoforms. In the phylogenetic trees constructed, cestode actins were seen to map to two different regions, one on the border of the metazoan actins and the other within this group. It is, however, difficult to say whether the cestode actins branched off early in the metazoan evolution or if this position in the phylogenetic tree only reflects upon differences in evolutionary rate. Received: 19 June 1996 / Accepted: 20 August 1996  相似文献   
83.
The available amino acid sequences of the α-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (β/α)8-barrel between the strand β3 and the helix α3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an α-helix succeeded by a three-stranded antiparallel β-sheet. These enzymes are α-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few α-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (β/α)8-barrel elements throughout the entire sequence of enzymes from the oligo-1,6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the α-amylase family. Received: 4 December 1996 / Accepted: 13 March 1997  相似文献   
84.
SNARE Proteins-Why So Many,Why So Few?   总被引:1,自引:0,他引:1  
Abstract: Both trafficking and secretion critically depend on accurate and specific membrane recognition and fusion. A key step in these processes is the assembly of a complex consisting of a small number of proteins, i.e., the exocytic core complex. In nerve terminals, this set consists of VAMP and synaptotagmin, which reside at membranes of synaptic vesicles, and syntaxin and SNAP-25 at the plasma membrane. In this survey, different secretory systems that depend on the exocytic core proteins are considered. The possibility that specificity in membrane recognition and fusion is achieved by the numerous variants of proteins of the exocytic core is discussed. Variability of the core complex proteins is determined by the complexity of gene families, isoform-specific localization, and posttranslational modifications. Basic biochemical properties depend on specific isoforms, and the possible protein-protein interactions are determined, in turn, by the compatibility of different isoforms. A correlation between specific variants and distinct biochemical or cellular properties is shown. The outcome of this survey is that heterogeneity in secretion may be dictated by the large number of possible combinations of variants of only a few proteins.  相似文献   
85.
神经生长因子家族及其受体研究进展   总被引:9,自引:0,他引:9  
过去几年在神经营养因子、受体和神经元细胞程序性死亡的研究领域中取得了几项引人注目的进展:(1)神经生长因子(NGF)基因家族的其他一些成员包括脑源性神经营养因子(BDNF)、神经营养素-3(NT-3)、神经营养素-4(NT-4)、神经营养素-5(NT-5)的发现;(2)神经生长因子三维结构及功能和进化之关系的阐明;(3)定性了两种神经生长因子受体P75^NGFR和原癌基因p140^trkA以及相关  相似文献   
86.
We have determined the nucleotide sequence of an 841-bp fragment derived from a segment of the human genome previously cloned by Chumakov et al. [Gene 17 (1982) 19–26] and Zabarovsky et al. [Gene 23 (1983) 379–384] and containing regions homologous to the viral mos gene probe. This sequence displays homology with part of the coding region of the human and murine c-mos genes, contains several termination codons, and is interrupted by two Alu-family elements flanked by short direct repeats. Probably, the progenitor of the human c-mos gene was duplicated approximately at the time of mammalian divergence, was converted to a pseudogene, and acquired insertions of two Alu elements.  相似文献   
87.
Summary The eye lens-crystallins in cow and chicken are encoded by a family of at least six genes. In order to assess the distribution of the corresponding genes among other vertebrates we hybridized -crystallin sequences (A2, A3/A1, A4, B1, B2, B3), isolated from a bovine lens cDNA library, to Southern blots on whichEcoR1-digested chromosomal DNA was blotted from different vertebrate species. These included human, chimpanzee, calf, rat, pigeon, duck, monitor lizard, toad, trout, and lamprey. Positive hybridization signals were found in the representatives of virtually all classes of vertebrates. The basic B-crystallins gave hybridization signals in more species than the acidic A ones. In monitor lizard and toad the weakest hybridization signals for basic crystallin probes were found. For acidic crystallin probes the distribution pattern was more simple; among cold-blooded vertebrates a signal for A2 was found in trout and lamprey, for A4 in trout, and for A3/A1 only in toad. The results demonstrate that the duplications leading to the -crystallin gene family occurred before or during the earliest stages of vertebrate evolution.  相似文献   
88.
Monoclonal antibody HNK-1 reacts with a carbohydrate epitope present in proteins, proteoglycans, and sulfoglucuronylglycolipids (SGGLs). On high-performance TLC plates, SGGLs of the CNS from several species migrated consistently slower than those from the PNS, a result indicating possible differences in the structures. The structural characteristics of the major SGGL, sulfoglucuronylneolactotetraosylceramide (SGGL-1), from CNS was compared with those of SGGL-1 from PNS. Although the composition, sequence, and linkages of the carbohydrate moiety of the SGGL-1 species were identical, SGGL-1 from CNS contained mainly short-chain fatty acids, 16:0, 18:0, and 18:1, amounting to 85% of the total fatty acids, whereas SGGL-1 from PNS contained large proportions (59%) of long-chain fatty acids (greater than 18:0). These differences in the fatty acid composition accounted for the different migration pattern observed. The developmental expression of SGGLs and HNK-1-reactive proteins was studied in rat cerebral cortex between embryonic day (ED) 15 to adulthood. SGGLs in the rat cortex were maximally expressed around ED 19 and almost completely disappeared by postnatal day (PD) 20. This expression was contrary to their increasing expression in the cerebellum and sciatic nerve with postnatal development. Six to eight protein bands with a molecular mass of greater than 160 kDa were HNK-1 reactive in the rat cerebral cortex at different ages. The major HNK-1 reactivity to the 160-kDa protein band seen in ED 19 to PD 10 cortex decreased and completely disappeared from the adult cortex, whereas several other proteins remained HNK-1 reactive even in the adult. Western blot analyses of the neural cell adhesion molecules (N-CAMs) during development of the rat cortex with a polyclonal anti-N-CAM antibody showed that the major HNK-1-reactive protein bands were not N-CAMs. Between PD 1 and 10, 190-200-kDa N-CAM was the major N-CAM, and between PD 15 to adulthood, 180-kDa N-CAM was the only N-CAM present in the rat cortex.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号